赵娜0418

2020-10-18   阅读量: 18

数据分析师

聚类中的最优k值如何选择?

一、问题描述

在做项目是需要用到K-means聚类时,有一个选取最优K值的步骤需要我们去做,有两个方法时我们经常会用到的:手肘法和轮廓系数法。

1、手肘法描述及应用

1.1 理论

手肘法的核心指标是SSE(sum of the squared errors,误差平方和),



其中,Ci是第i个簇,p是Ci中的样本点,mi是Ci的质心(Ci中所有样本的均值),SSE是所有样本的聚类误差,代表了聚类效果的好坏。


手肘法的核心思想是:随着聚类数k的增大,样本划分会更加精细,每个簇的聚合程度会逐渐提高,那么误差平方和SSE自然会逐渐变小。并且,当k小于真实聚类数时,由于k的增大会大幅增加每个簇的聚合程度,故SSE的下降幅度会很大,而当k到达真实聚类数时,再增加k所得到的聚合程度回报会迅速变小,所以SSE的下降幅度会骤减,然后随着k值的继续增大而趋于平缓,也就是说SSE和k的关系图是一个手肘的形状,而这个肘部对应的k值就是数据的真实聚类数。当然,这也是该方法被称为手肘法的原因。

1.2 实践

我们对预处理后数据.csv 中的数据利用手肘法选取最佳聚类数k。具体做法是让k从1开始取值直到取到你认为合适的上限(一般来说这个上限不会太大,这里我们选取上限为8),对每一个k值进行聚类并且记下对于的SSE,然后画出k和SSE的关系图(毫无疑问是手肘形),最后选取肘部对应的k作为我们的最佳聚类数。python实现如下:



显然,肘部对于的k值为4,故对于这个数据集的聚类而言,最佳聚类数应该选4。


2. 轮廓系数法

2.1 理论

该方法的核心指标是轮廓系数(Silhouette Coefficient),某个样本点Xi的轮廓系数定义如下:


其中,a是Xi与同簇的其他样本的平均距离,称为凝聚度,b是Xi与最近簇中所有样本的平均距离,称为分离度。而最近簇的定义是:


其中p是某个簇Ck中的样本。事实上,简单点讲,就是用Xi到某个簇所有样本平均距离作为衡量该点到该簇的距离后,选择离Xi最近的一个簇作为最近簇。


求出所有样本的轮廓系数后再求平均值就得到了平均轮廓系数。平均轮廓系数的取值范围为[-1,1],且簇内样本的距离越近,簇间样本距离越远,平均轮廓系数越大,聚类效果越好。那么,很自然地,平均轮廓系数最大的k便是最佳聚类数。

2.2 实践

我们同样使用2.1中的数据集,同样考虑k等于1到8的情况,对于每个k值进行聚类并且求出相应的轮廓系数,然后做出k和轮廓系数的关系图,选取轮廓系数取值最大的k作为我们最佳聚类系数,python实现如下:

import pandas as pd
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
import matplotlib.pyplot as plt
 
df_features = pd.read_csv(r'C:\Users\61087\Desktop\项目\爬虫数据\预处理后数据.csv',encoding='gbk')
Scores = []  # 存放轮廓系数
for k in range(2,9):
    estimator = KMeans(n_clusters=k)  # 构造聚类器
    estimator.fit(df_features[['R','F','M']])
    Scores.append(silhouette_score(df_features[['R','F','M']],estimator.labels_,metric='euclidean'))
X = range(2,9)
plt.xlabel('k')
plt.ylabel('轮廓系数')
plt.plot(X,Scores,'o-')
plt.show()

得到聚类数k与轮廓系数的关系图:


可以看到,轮廓系数最大的k值是2,这表示我们的最佳聚类数为2。但是,值得注意的是,从k和SSE的手肘图可以看出,当k取2时,SSE还非常大,所以这是一个不太合理的聚类数,我们退而求其次,考虑轮廓系数第二大的k值4,这时候SSE已经处于一个较低的水平,因此最佳聚类系数应该取4而不是2。


但是,讲道理,k=2时轮廓系数最大,聚类效果应该非常好,那为什么SSE会这么大呢?在我看来,原因在于轮廓系数考虑了分离度b,也就是样本与最近簇中所有样本的平均距离。为什么这么说,因为从定义上看,轮廓系数大,不一定是凝聚度a(样本与同簇的其他样本的平均距离)小,而可能是b和a都很大的情况下b相对a大得多,这么一来,a是有可能取得比较大的。a一大,样本与同簇的其他样本的平均距离就大,簇的紧凑程度就弱,那么簇内样本离质心的距离也大,从而导致SSE较大。所以,虽然轮廓系数引入了分离度b而限制了聚类划分的程度,但是同样会引来最优结果的SSE比较大的问题,这一点也是值得注意的。


总结

从以上两个例子可以看出,轮廓系数法确定出的最优k值不一定是最优的,有时候还需要根据SSE去辅助选取,这样一来相对手肘法就显得有点累赘。因此,如果没有特殊情况的话,我还是建议首先考虑用手肘法。


0.0157 2 0 关注作者 收藏

评论(0)


暂无数据

推荐帖子

推荐课程